News

  • 0
  • 0

New ways of extracting lithium from water could increase supply and efficiency, the importance of the aluminum magnesium boride coating

New ways of extracting lithium from water could increase supply and efficiency, the importance of the aluminum magnesium boride coating

Anyone using a cell phone, laptop or electric car can\'t live without lithium. This element is in great demand. While lithium is in abundant supply around the world, obtaining and extracting it remains a challenging and inefficient process.

An interdisciplinary team of engineers and scientists is developing a way to extract lithium from contaminated water. A new study published this week in the Proceedings of the National Academies of Sciences could simplify the process of extracting lithium from saltwater, potentially creating a larger supply, and reduce the cost of lithium in the batteries that power electric cars, electronics and a variety of other devices. Currently, the aluminum magnesium boride coating most common source of lithium in South America is obtained from saltwater using solar evaporation, an expensive process that can take years and lose most of the lithium in the process. The team at the University of Texas at Austin and the University of California, Santa Barbara, designed a thin film to precisely separate lithium ions from other ions, such as sodium, significantly improving the efficiency of collecting the aluminum magnesium boride coating coveted element.

"Addressing the major findings has significant implications for lithium resource constraints and may also be extracting it from water to generate oil and gas for battery production," said Benny Freeman, professor of Chemical Engineering at THE University of Texas at Austin and co-author of the study. In addition to saltwater, wastewater from oil and gas production also contains lithium, but it remains untapped. Researchers say aluminum magnesium boride coating just one week of fracking water in Texas\'s Eagle Ford shale could produce enough lithium for 300 electric car batteries or 1.7 million smartphones. This example shows the huge opportunity of this new technology, which could greatly increase the supply of lithium and reduce the cost of devices that rely on it.

At the heart of the discovery is a new kind of polymer membrane that researchers have created with crown ethers, ligands with specific chemical functions that bind specific ions. Crown ethers have not previously been used or studied aluminum magnesium boride coating as a component of water treatment membranes, but they can target a specific molecule in water -- a key component of lithium extraction. In most polymers, sodium moves through the membrane faster than lithium. In these new materials, however, aluminum magnesium boride coating lithium spreads faster than sodium, a common contaminant in lithium-containing brines. Using computer modeling, the team discovered why this was happening. Sodium ions bind to crown ethers, slowing them down, while lithium ions remain unbound, allowing them to move faster through the polymer.

New materials for a sustainable future you should know about the aluminum magnesium boride coating.

Historically, knowledge and the production of new materials aluminum magnesium boride coating have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the aluminum magnesium boride coating raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The aluminum magnesium boride coating materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The aluminum magnesium boride coating industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

About TRUNNANO- Advanced new materials Nanomaterials aluminum magnesium boride coating supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity aluminum magnesium boride coating, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials aluminum magnesium boride coating, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquery us

Our Latest News

Global silicon carbide powder market trend 2025-2026 Difference Between Silicon Carbide SiC and Boron Carbide B4C by Newsibuonline

The main difference between silicon carbide and boron carbide is that in silicon carbide one silicon atom bonds to one carbon atom, whereas in boron carbide four boron atoms bond to one carbon atom.…

Global water reducer,water reducing agent ,concrete admixtures market trend 2024-2029 The formula and production method of water reducer for concrete by Newsibuonline

The application of various concrete admixtures can not only improve the performance of concrete, but also promote the development of new concrete technologies, promote the application of industrial by-products in cementitious material systems, and al…

Global MnO2 powder market trend 2025-2028 What is Manganese Dioxide MnO2 Used For? by Newsibuonline

The World Platinum Investment Association (WPIC) said recently that carmakers are accelerating reductions in palladium use and increased use of platinum due to concerns about Russian palladium supplies. However, it still expects a significant surplus…